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ABSTRACT: The Linear Fractional Programming Problem (LFP) is approached in a different way in this 

study, where the constraints and objective function take the form of linear inequality. In this article, we look 

into some recent advances in linear fractional programming. It will be demonstrated that this approach, which 

relies on the idea of choosing a pivot vector on the basis of the fresh rules of procedure outlined below, is mostly 

utilized for solving algebraic problems. We include some significant previous findings in order to offer the 

required context. The suggested approach is demonstrated with a straightforward example. 
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I. INTRODUCTION   

A generalization of linear programming (LP) in 

mathematics is a part of linear-fractional programming 

(LFP). In contrast to linear programmes, where the 

objective function is a linear function, linear-fractional 

programmes have an objective function that is a ratio of 

two linear functions. Maximum Linear Fraction 

Problems in management sciences, research, and 

interest arise in a variety of situations. Because they are 

helpful in management, production planning, financial 

and corporate planning, maximizing return on 

investment, planning for healthcare and hospitals, and 

maximizing cost/time all give rise to fractional 

programming. The Charnes-Cooper [1] transformation 

can convert any linear-fractional programme into a 

linear programme, provided that the feasible region is 

non-empty and limited. Craven [2] demonstrated how 

LFP might be used to cut rolls of paper into smaller rolls 

of a specific size and number while minimizing the 

waste-to-useful output ratio. Fox [3] and Klein [4] 

demonstrated that LFP is appropriate for the challenge 

of determining the minimal cost management strategies 

for stochastic systems under Markovian conditions. In 

order to find a solution to a problem where two or more 

activities compete for a limited amount of resources, 

linear fractional programming problems are important in 

particular. Many researchers have developed algorithms 

for tackling LFP issues [5-8]. 

The linear fractional function and the constraint 

functions, which take the form of linear inequality, are 

the essential components of the alternative approach for 

solving linear fractional programming (LPF) that is 

proposed in this study. In contrast to earlier approaches, 

the modified powerful strategy for solving algebraic 

problems that was described in this study relies on the 

novel idea of choosing the pivot vector. To make the 

developed theory and the suggested procedure clear, an 

example is provided. 

 

II. WORKFLOW METHODOLOGY 

A modified process to resolve the problem of linear 

fractional programming is stated stage wise as below: 

Stage 1: Consider the Fractional Programming Problem 

defined as: 

Maximize ( ) ( ) / ( )T TN y P y R Q y S= + + , subject to the 

constraints Uy V= ; 0y  

We emphasize that the non-negative criteria are part of 

the set of restrictions where 
ny R , A is a nm  

matrix, P and Q are n-vectors, b is a 1m  vector, and R 

and S are  scalars. 

Consider 
wy  be the initial basic feasible solution such 

that 
ww y V=  or 1

wy w V−= , 0wy   

where
1 2, ,............., mw w w w=  

 Next assume that T

w wN P y R= +  and 

T

w wN Q y S= +
 
 

Additionally, T

wP  and T

wQ stand for the vectors 

connected to the fundamental variables in the objective 

function's numerator and denominator, respectively. 

Further we assume that for this basic feasible solution
1

j jz w U−= , T

w jN P z= and T

w jN Q U= . 

Stage 2: With the adjusted value of /N N N = , 

another fundamentally workable solution might be 

discovered. We want to focus solely on those simple, 

workable solutions where changing just one column of 

w  is involved. 

Now if the basic feasible solution is denoted by wy , then 

( )
1

wy w V
−

 =  where
1 2, ,............., mw w w w   = . The 

column of the new matrix w  are given by 

( )i iV V i r=  and 
r jV U = . Next, we obtain the value of 

the new basic variables in terms of the original ones and  
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the  
ijz i.e. ( / ),wi wi w ij rjy y y z z = −

/ ( )wi wr rjy y z say = = ,

1

m

j ij i

i

U z V
=

= . 

Stage 3: Finding a new fundamentally workable 

solution with an increased value of the objective 

function is what we are interested in. Let the new 

objective function be  
1 1 1/N N N =  

we have ( )1

1

/
m

j j

i

N N N P 
=

  = + −   and 

( )1

1

/
m

j j

i

N N N Q 
=

  = + −  ,  

where 
=

m

i 1

  is the sum of the corresponding column. jM 

and jM   refer to the original basic feasible solution. 

Stage 4: The value of the objective function will 

improve if
1N N , or, 

( ) ( ) 0j j j jN N P N N Q   − − −  , let   

( ) ( )j j j j jN N P N N Q    = − − + −  

 Now j  is less than zero if ( ) 0j jN Q −  ,

( ) 0j jN Q −  or ( ) 0j jN Q − =  

We conclude that a given a basic feasible solution
1

wy w V− = , if for any column 
jU  in U  but not in w ,

0j  holds, and if at least one 0ijz  , then it is 

possible to obtain a new basic feasible solution by 

replacing one of the column in w  by 
jU  and the new 

value of the objective function satisfies 
1 .N N . 

 

Stage 5: Forany
jU U  not in w  at least one  0ijz 

, .1 mi   

we have basic feasible solution

1

m

i j v

i

y wV =

=

 , add and 

subtracts 
jU  (where   is any scalar), one obtains  

1

m

i j j j

i

y wV U U V 
=

 − + =  but 

1

m

ij i j

i

z V U 
=

 − = −

( )
1

m

i ij i j

i

yw z V U V 
=

  − + =  when 0 , we have 

( ) 0i ijyw z−  . 

Stage 6: In the algorithmif we start with a basic feasible 

solution and if there is a vector 
jU  not in the basis 

having 0j , then there exists another basic feasible 

solution such that
1N N . Thus changing one vector at 

a time so long as there is some 
jU  not in the basis with 

the condition of 0j  and at each step, N  is 

increased. This procedure continues up to a finite 

number of steps because of finite basis. This process will 

terminate only when all 0j , for every column 
jU  in

U .  

III. EXAMPLE BASED ON MODIFIED 

TECHNIQUE  

Use modifiedprocess to solve the following Linear 

Fractional Programming Problem: 

Maximize ( )1 2 1 23 2 / ( 7)x x x x+ + +  

Subject to the constraints:
1 23 4 12,x x+   

1 25 3 15,x x+   

0, 21
xx  

IV. SOLUTION OF THE PROBLEM  

Maximize  ( )1 2 1 23 2 / ( 7)N x x x x= + + +  

Convert the inequality constraints into equations by 

introducing slack variable 

Subject to the constraints: 

1 2 13 4 12x x S+ + = ,  

1 2 25 3 15x x S+ + = , where 0, 21
xx  and slack 

variable 0, 21
SS  

The initial basic feasible solution is given in the 

following tables:- 

Initial iteration:-  
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First Iteration:-Introduce 1y  and drop 4y . 

 

Second Iteration:-Introduce 2y  and drop 3y . 

 
 

Since 0j , and hence the optimum solution exist and 

its value is given by 
1 24 /11x =  and 

2 15 /11x =  thus 

we reached maximum 102 /116N = . 

V. CONCLUSION 

The present research successfully developed a modified 

process to resolve the problem of linear fractional 

programming. From the results, it can be seen that our 

modified method produces the optimum response in less 

iterations than the conventional way, or at least in an 

equivalent number of iterations, and that our technique 

produces better results than other methods.   As a result, 

our methodology requires fewer iterations overall. 

Additionally, it takes us less time to simplify numerical 

issues. 
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